Respuesta :

Answer:

The area will be:

[tex]A=18(1+\sqrt{3}) \: u^{2}[/tex] or [tex]A=49.18 \: u^{2}[/tex].

Step-by-step explanation:

Using the definition of tangent, we have:

[tex]tan(\alpha)=\frac{6}{\vec{AB}}[/tex]

We know that tan(α) = 1, then we can find AB

[tex]1=\frac{6}{\vec{AB}}[/tex]

[tex]\bar{AB}=6\: u[/tex]

u means any unit.

Now, we need to find the distance BC. If the angle ∠D is 60°, then ∠C must be 30°. Using the tangent definition in the triangle BCD we have:

[tex]tan(30)=\frac{6}{\bar{BC}}[/tex]

[tex]\bar{BC}=\frac{6}{tan(30)}[/tex]

[tex]\bar{BC}=\frac{6}{1/\sqrt{3}}[/tex]

[tex]\bar{BC}=6\sqrt{3} \: u[/tex]

So, the base of the triangle will be:

[tex]b=\bar{AB}+\bar{BC}=6+6\sqrt{3}=6(1+\sqrt{3}) \: u[/tex]

The area of a triangle is given by the following equation:

[tex]A=\frac{b*h}{2}[/tex]

  • b is the base ([tex]b=6(1+\sqrt{3})\: u[/tex])
  • h is the height (h=6 u)

[tex]A=\frac{6(1+\sqrt{3})*6}{2}[/tex]

[tex]A=18(1+\sqrt{3})[/tex]

Therefore, the area will be [tex]A=49.18 \: u^{2}[/tex].

I hope it helps you!