Respuesta :

Answer:

9[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplify the radicals

[tex]\sqrt{20}[/tex]

= [tex]\sqrt{4(5)}[/tex]

= [tex]\sqrt{4}[/tex] × [tex]\sqrt{5}[/tex]

= 2[tex]\sqrt{5}[/tex]

[tex]\sqrt{45}[/tex]

= [tex]\sqrt{9(5)}[/tex]

= [tex]\sqrt{9}[/tex] × [tex]\sqrt{5}[/tex]

= 3[tex]\sqrt{5}[/tex]

Then

3[tex]\sqrt{20}[/tex] + [tex]\sqrt{45}[/tex]

= 3(2[tex]\sqrt{5}[/tex] ) + 3[tex]\sqrt{5}[/tex]

= 6[tex]\sqrt{5}[/tex] + 3[tex]\sqrt{5}[/tex]

= 9[tex]\sqrt{5}[/tex]

9/- 7dndusjjsjddkkdkdksksjdid