The Great Sandini is a 60 kg circus performer who is shot from a cannon (actually a spring gun). You don't find many men of his caliber, so you help him design a new gun. This new gun has a very large spring with a very small mass and a force constant of 1300 N/m that he will compress with a force of 6500 N. The inside of the gun barrel is coated with Teflon, so the average friction force will be only 50 N during the 5.0 mm he moves in the barrel.

Required:
At what speed will he emerge from the end of the barrel, 2.5 mabove his initial rest position?

Respuesta :

Answer:

22m/s

Explanation:

Mass, m=60 kg

Force constant, k=1300N/m

Restoring force, Fx=6500 N

Average friction force, f=50 N

Length of barrel, l=5m

y=2.5 m

Initial velocity, u=0

[tex]F_x=kx[/tex]

Substitute the values

[tex]6500=1300x[/tex]

[tex]x=\frac{6500}{1300}=5[/tex]m

Work done due to friction force

[tex]W_f=fscos\theta[/tex]

We have [tex]\theta=180^{\circ}[/tex]

Substitute the values

[tex]W_f=50\times 5cos180^{\circ}[/tex]

[tex]W_f=-250J[/tex]

Initial kinetic energy, Ki=0

Initial gravitational energy, [tex]U_{grav,1}=0[/tex]\

Initial elastic potential energy

[tex]U_{el,1}=\frac{1}{2}kx^2=\frac{1}{2}(1300)(5^2)[/tex]

[tex]U_{el,1}=16250J[/tex]

Final elastic energy,[tex]U_{el,2}=0[/tex]

Final kinetic energy, [tex]K_f=\frac{1}{2}(60)v^2=30v^2[/tex]

Final gravitational energy, [tex]U_{grav,2}=mgh=60\times 9.8\times 2.5[/tex]

Final gravitational energy, [tex]U_{grav,2}=1470J[/tex]

Using work-energy theorem

[tex]K_i+U_{grav,1}+U_{el,1}+W_f=K_f+U_{grav,2}+U_{el,2}[/tex]

Substitute the values

[tex]0+0+16250-250=30v^2+1470+0[/tex]

[tex]16000-1470=30v^2[/tex]

[tex]14530=30v^2[/tex]

[tex]v^2=\frac{14530}{30}[/tex]

[tex]v=\sqrt{\frac{14530}{30}}[/tex]

[tex]v=22m/s[/tex]