Respuesta :

This question is incomplete, the complete question is;

Suppose u and v are functions of x that are differentiable at x=0

and that { u(0) = 7, u'(0) = -5 }  { v(0)= -1, v'(0) = -4 }

Find the values of the following derivatives at x = 0.

a) [tex]\frac{d}{dx}[/tex]( uv )

b)  [tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] )

c)  [tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )

Answer:

a) [tex]\frac{d}{dx}[/tex]( uv ) = -23  

b) [tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] )  = 33

c) [tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] ) = -32/49 or - 0.6531

Step-by-step explanation:

Given that;

{ u(0) = 7, u'(0) = -5 }  { v(0)= -1, v'(0) = -4 }

a)

[tex]\frac{d}{dx}[/tex]( uv )

we differentiate

[tex]\frac{d}{dx}[/tex]( uv )  = uv' + vu'

at x = (0), we substitute our values

[tex]\frac{d}{dx}[/tex]( uv ) = ( 7 × -4 ) + ( -1 × -5)

[tex]\frac{d}{dx}[/tex]( uv )  = -28 + 5

[tex]\frac{d}{dx}[/tex]( uv ) = -23  

b)

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] )

we differentiate

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] ) = ( vu' - uv' ) / v²

at x=0, we substitute our values

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] ) = ( (-1 × -5) - (7 × -4 ) ) / (-1)²

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] ) = (( 5 - ( -28 )) / 1

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] )  = 33 / 1

[tex]\frac{d}{dx}[/tex]( [tex]\frac{u}{v}[/tex] )  = 33

c) [tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )

we differentiate

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )  = ( uv' - vu' ) / u²

at x=0, we substitute our values

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )  = ( (7 × -4) - (-1 × -4) ) / (7)²

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] ) = ( -28 - ( 4 ) ) / 49

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )  = ( -28 - 4 ) /49

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] )  = -32 / 49

[tex]\frac{d}{dx}[/tex]( [tex]\frac{v}{u}[/tex] ) = -32/49 or - 0.6531