Answer: The final pressure is 12.6 atm
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 5.6 atm
[tex]P_2[/tex] = final pressure of gas = ?
[tex]V_1[/tex] = initial volume of gas = v
[tex]V_2[/tex] = final volume of gas = [tex]v-\frac{50}{100}v=0.5v[/tex]
[tex]T_1[/tex] = initial temperature of gas = [tex]-19.0^0C=(-19+273)K=254K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]12.0^0C=(12.0+273)K=285K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{5.6\times v}{254}=\frac{P_2\times 0.5v}{285}[/tex]
[tex]P_2=12.6atm[/tex]
The final pressure is 12.6 atm