Answer:
[tex]4.77\ \text{A}[/tex]
Explanation:
F = Magnetic force = 4.11 N
[tex]I_n[/tex] = Net current
[tex]I_2[/tex] = Current in one of the wires = 7.68 A
B = Magnetic field = 0.59 T
[tex]\theta[/tex] = Angle between current and magnetic field = [tex]65^{\circ}[/tex]
[tex]l[/tex] = Length of wires = 2.64 m
[tex]I[/tex] = Current in the other wire
Magnetic force is given by
[tex]F=I_nlB\sin\theta\\\Rightarrow I_n=\dfrac{F}{lB\sin\theta}\\\Rightarrow I_n=\dfrac{4.11}{2.64\times 0.59 \sin65^{\circ}}\\\Rightarrow I_n=2.91\ \text{A}[/tex]
Net current is given by
[tex]I_n=I_2-I\\\Rightarrow I=I_2-I_n\\\Rightarrow I=7.68-2.91\\\Rightarrow I=4.77\ \text{A}[/tex]
The current I is [tex]4.77\ \text{A}[/tex].