Respuesta :

Answer:

[tex] \large \boxed{f(8) = 27}[/tex]

Step-by-step explanation:

Goal

  • Find f(8)

Given

  • Equation

[tex]f(x) = \frac{1}{2} {x}^{2} - ( \frac{1}{4} x + 3)[/tex]

Step 1

  • Substitute x = 8 in the equation and replace f(x) with f(8).

[tex]f(8) = \frac{1}{2} {(8)}^{2} - ( \frac{1}{4} (8) + 3)[/tex]

Step 2

  • Evaluate the value of f(8).

[tex]f(8) = \frac{1}{2} (64) - ( \frac{8}{4} + 3) \\ f(8) = 32 - ( \frac{2}{1} + 3) \\ f(8) = 32 - (2 + 3) \\ f(8) = 32 - (5) \longrightarrow 32 - 5 \\ f(8) = 27[/tex]

Hence, the value of f(8) is 27.