Respuesta :
Answer:
37.5
Step-by-step explanation:
The line which marks the height 25\sqrt325
3
25, square root of, 3, end square root of the large triangle is vertical, and the base of the triangle is horizontal, so their intersection is a right angle. The angles in the large triangle add up to \piπpi, so the remaining angle is:
\qquad \begin{aligned} \pi - \dfrac\pi2 - \dfrac\pi6 =& \dfrac\pi3 \end{aligned}
π−
2
π
−
6
π
=
3
π
The original triangle L U R is shown, but now the length of segment U D is shown to be '25 times the square root of 3', and angle U L R is shown to have a measure of ' pi divided by 3' radians.
The original triangle L U R is shown, but now the length of segment U D is shown to be '25 times the square root of 3', and angle U L R is shown to have a measure of ' pi divided by 3' radians.
Hint #2
Looking at the left triangle ULDULDU, L, D, the hypotenuse length LULUL, U is:
\qquad \begin{aligned} \dfrac{25\sqrt3}{\sin\!\left({\Large\frac\pi3}\right)} \end{aligned}
sin(
3
π
)
25
3
Looking at the big triangle LURLURL, U, R, we see that the base length LRLRL, R is:
\qquad \begin{aligned} &\left(LU\right)\dfrac{1}{\sin\!\left({\Large\frac\pi6}\right)} \\ \\ =&\left(\dfrac{25\sqrt3}{\sin\!\left({\Large\frac\pi3}\right)}\right)\dfrac{1}{\sin\!\left({\Large\frac\pi6}\right)} \\ \\ =&\left(\dfrac{25\sqrt3}{ \quad\large\frac{\sqrt{3}}{2}\quad }\right)\dfrac{1}{ \quad\large\frac{1}{2}\quad } \\ \\ =&\left(\dfrac{25}{ \quad\large\frac{1}{2}\quad }\right)\dfrac{1}{ \quad\large\frac{1}{2}\quad } \\ \\ =&100 \\ \end{aligned}
=
=
=
=
(LU)
sin(
6
π
)
1
⎝
⎜
⎛
sin(
3
π
)
25
3
⎠
⎟
⎞
sin(
6
π
)
1
⎝
⎜
⎛
2
3
25
3
⎠
⎟
⎞
2
1
1
(
2
1
25
)
2
1
1
100
Hint #3
The large triangle has uniform thickness, so the inner triangle's sides are parallel to the outer triangle's sides. Therefore, the inner triangle's angles are congruent to the outer triangle's angles. The two triangles are similar.
Hint #4
Similar triangles have proportional lengths, so we can set up the equation:
\qquad \begin{aligned} \dfrac{h}{w} =& \dfrac{H}{W} \\ \\ \dfrac{h}{50\sqrt{3}} \approx& \dfrac{25\sqrt3}{100} \end{aligned}
w
h
=
50
3
h
≈
W
H
100
25
3
Hint #5
\qquad\qquad\, \begin{aligned} \dfrac{h}{50\sqrt{3}} \approx& \dfrac{\sqrt3}{4} \\ \\ {h} \approx& \dfrac{{50\sqrt{3}}\sqrt3}{4} \\ \\ {h} \approx& \dfrac{25\cdot3}{2} \\ \\ h \approx& 37.5 \\ \\ \end{aligned}
50
3
h
≈
h≈
h≈
h≈
4
3
4
50
3
3
2
25⋅3
37.5
Hint #6
To the nearest tenth, the height of the inner triangle is:
\qquad\qquad\, \begin{aligned} h \approx& 37.5 \end{aligned}
h≈
37.5
*note: The answers 37.337.337, point, 3 and 37.437.437, point, 4 may have been obtained by other methods of solving for hhh since this is an approximation. Those answers are also accepted as correct.
Two triangles are similar if the sides of both triangles can be represented as equivalent ratios. The height of the shaded triangle is 37.5 units.
Given that:
[tex]\overline{UD} = 25\sqrt 3[/tex]
[tex]w = 50\sqrt3[/tex]
See attachment
First, we calculate side length [tex]\overline{LD}[/tex].
This calculated using tangent trigonometry ratio
[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]
So, we have:
[tex]\tan(90-\frac{\pi}{3}) = \frac{\overline{UD}}{\overline{LD}}[/tex]
[tex]\tan(90-30) = \frac{\overline{UD}}{\overline{LD}}[/tex]
[tex]\tan(60) = \frac{\overline{UD}}{\overline{LD}}[/tex]
This gives:
[tex]\tan(60^o) = \frac{25\sqrt3}{\overline{LD}}[/tex]
Make LD the subject
[tex]\overline{LD}= \frac{25\sqrt3}{\tan(60^o)}[/tex]
[tex]\overline{LD}= \frac{25\sqrt3}{\sqrt 3}[/tex]
[tex]\overline{LD}= 25[/tex]
Next, we calculate side length [tex]\overline{DR}[/tex].
This calculated using tangent trigonometry ratio
[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]
So, we have:
[tex]\tan(\frac{\pi}{6}) = \frac{\overline{UD}}{\overline{DR}}[/tex]
This gives:
[tex]\tan(30^o) = \frac{25\sqrt3}{\overline{DR}}[/tex]
Make DR the subject
[tex]\overline{DR}= \frac{25\sqrt3}{\tan(30^o)}[/tex]
[tex]\overline{DR}= \frac{25\sqrt3}{1/\sqrt 3}[/tex]
[tex]\overline{DR}= 25\sqrt3 \times \sqrt 3[/tex]
[tex]\overline{DR}= 25 \times 3[/tex]
[tex]\overline{DR}= 75[/tex]
Calculate side length [tex]\overline{LR}[/tex]
[tex]\overline{LR} = \overline{LD}+\overline{DR}[/tex]
[tex]\overline{LR} = 25+75[/tex]
[tex]\overline{LR} = 100[/tex]
Because the triangle has a uniform thickness, the small and the big triangle are similar triangles.
So, the height (h) is calculated using the following equivalent ratios
[tex]h:w =\overline{UD}:\overline{LR}[/tex]
Express as a fraction
[tex]\frac hw =\frac{\overline{UD}}{\overline{LR}}[/tex]
Make h the subject
[tex]h =\frac{\overline{UD}}{\overline{LR}} \times w[/tex]
Substitute known values
[tex]h =\frac{25\sqrt3}{100} \times 50\sqrt 3[/tex]
[tex]h =\frac{3750}{100}[/tex]
[tex]h =37.50[/tex]
Hence, the height of the shaded triangle is 37.5 units.
Read more about similar triangles at:
https://brainly.com/question/16919171
