Answer:
The correct explanation is option B;
B. ∠L ≅ ∠L By Reflexive Prop. ≅.
Since [tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex], ∠LOP ≅ ∠LMN by the Corr. ∠s Post. Therefore, ΔLOP ~ ΔLMN by AA ~. OP = 2 and MN = 6
Step-by-step explanation:
The given parameters are;
[tex]\overline {LP}[/tex] = 5
[tex]\overline {NP}[/tex] = 10
[tex]\overline {LN}[/tex] = [tex]\overline {LP}[/tex] + [tex]\overline {NP}[/tex] = 15
[tex]\overline {OP}[/tex] = x - 3
[tex]\overline {MN}[/tex] = x + 1
A two column proof is presented as follows;
Statement [tex]{}[/tex] Reason
∠L ≅ ∠L [tex]{}[/tex] By Reflexive property of congruency
[tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex] [tex]{}[/tex] Given
∠LOP ≅ ∠LMN [tex]{}[/tex] By the Corresponding angles Postulate
Therefore
ΔLOP ~ ΔLMN [tex]{}[/tex] By AA similarity Postulate
Where we have that ΔLOP and ΔLMN, we get;
[tex]\overline {OP}[/tex]/[tex]\overline {MN}[/tex] = [tex]\overline {LP}[/tex]/[tex]\overline {LN}[/tex] = 5/15 = 1/3
∴ (x - 3)/(x + 1) = 1/3
3·(x - 3) = 1·(x + 1)
3·x - 9 = x + 1
3·x - x = 1 + 9 = 10
2·x = 10
x = 10/2 = 5
x = 5
[tex]\overline {OP}[/tex] = (x - 3) = 5 - 3 = 2
[tex]\overline {OP}[/tex] = 2
[tex]\overline {MN}[/tex] = x + 1 = 5 + 1 = 6
[tex]\overline {MN}[/tex] = 6
Therefore, the correct option is ∠L ≅ ∠L By Reflexive Prop. ≅.
Since [tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex], ∠LOP ≅ ∠LMN by the Corr. ∠s Post. Therefore, ΔLOP ~ ΔLMN by AA ~. OP = 2 and MN = 6.