Identify the correct explanation for why the triangles are similar. Then find OP and MN.

Options:

A. ∠M≅∠N. Since OP¯¯¯¯¯∥MN¯¯¯¯¯¯¯, ∠LOP≅∠LMN by the Alt. Int. ∠s Thm. Therefore, △LOP∼△LMNby AA∼. OP=8 and MN=4.

B. ∠L≅∠L by the Reflex Prop. of ≅. Since OP¯¯¯¯¯∥MN¯¯¯¯¯¯¯, ∠LOP≅∠LMN by the Corr. ∠s Post. Therefore, △LOP∼△LMNby AA∼. OP=2 and MN=6.

C. ∠L≅∠L by the Reflex Prop. of ≅. Since OP¯¯¯¯¯∥MN¯¯¯¯¯¯¯, ∠LOP≅∠LMN by the Corr. ∠s Post. Therefore, △LOP∼△LMNby AA∼. OP=4 and MN=8.

D. ∠M≅∠N. Since OP¯¯¯¯¯∥MN¯¯¯¯¯¯¯, ∠LOP≅∠LMN by the Alt. Int. ∠s Thm. Therefore, △LOP∼△LMNby AA∼. OP=2 and MN=6.

Identify the correct explanation for why the triangles are similar Then find OP and MN Options A MN Since OPMN LOPLMN by the Alt Int s Thm Therefore LOPLMNby AA class=

Respuesta :

Answer:

The correct explanation is option B;

B. ∠L ≅ ∠L  By Reflexive Prop. ≅.

Since [tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex], ∠LOP ≅ ∠LMN by the Corr. ∠s Post. Therefore, ΔLOP ~ ΔLMN by AA ~. OP = 2 and MN = 6

Step-by-step explanation:

The given parameters are;

[tex]\overline {LP}[/tex] = 5

[tex]\overline {NP}[/tex] = 10

[tex]\overline {LN}[/tex] = [tex]\overline {LP}[/tex] + [tex]\overline {NP}[/tex] = 15

[tex]\overline {OP}[/tex] = x - 3

[tex]\overline {MN}[/tex] = x + 1

A two column proof is presented as follows;

Statement    [tex]{}[/tex]      Reason

∠L ≅ ∠L     [tex]{}[/tex]        By Reflexive property of congruency

[tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex]     [tex]{}[/tex]     Given

∠LOP ≅ ∠LMN [tex]{}[/tex]  By the Corresponding angles Postulate

Therefore

ΔLOP ~ ΔLMN [tex]{}[/tex]  By AA similarity Postulate

Where we have that ΔLOP and ΔLMN, we get;

[tex]\overline {OP}[/tex]/[tex]\overline {MN}[/tex]  = [tex]\overline {LP}[/tex]/[tex]\overline {LN}[/tex] = 5/15 = 1/3

∴ (x - 3)/(x + 1) = 1/3

3·(x - 3) = 1·(x + 1)

3·x - 9 = x + 1

3·x - x = 1 + 9 = 10

2·x = 10

x = 10/2 = 5

x = 5

[tex]\overline {OP}[/tex] = (x - 3) = 5 - 3 = 2

[tex]\overline {OP}[/tex] = 2

[tex]\overline {MN}[/tex] = x + 1 = 5 + 1 = 6

[tex]\overline {MN}[/tex] =  6

Therefore, the correct option is ∠L ≅ ∠L  By Reflexive Prop. ≅.

Since [tex]\overline {OP}[/tex] ║ [tex]\overline {MN}[/tex], ∠LOP ≅ ∠LMN by the Corr. ∠s Post. Therefore, ΔLOP ~ ΔLMN by AA ~. OP = 2 and MN = 6.

Answer:

∠L≅∠L by the Reflex Prop. of ≅.

Since OP⎯⎯⎯⎯⎯∥MN⎯⎯⎯⎯⎯⎯,∠LOP≅∠LMN by the

Corr. ∠s Post. Therefore, △LOP∼△LMN

by AA∼. OP=2 and MN=6.

Step-by-step explanation: