Respuesta :
Answer:
[tex]\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Factoring
- Exponential Rule [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]
- Exponential Rule [Powering]: [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Quotient Rule: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)[/tex]
eˣ Derivative: [tex]\displaystyle \frac{d}{dx}[e^u] = u'e^u[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}[/tex]
Step 2: Differentiate
- [Derivative] Quotient Rule: [tex]\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}[/tex]
- [Derivative] [Fraction - Numerator] eˣ derivative: [tex]\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}[/tex]
- [Derivative] [Fraction - Denominator] Exponential Rule - Powering: [tex]\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}[/tex]
- [Derivative] [Fraction - Numerator] Product Rule: [tex]\displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}[/tex]
- [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule: [tex]\displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}[/tex]
- [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify: [tex]\displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}[/tex]
- [Derivative] [Fraction - Numerator] [Brackets] Trig derivative: [tex]\displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}[/tex]
- [Derivative] [Fraction - Numerator] Factor: [tex]\displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}[/tex]
- [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]: [tex]\displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}[/tex]
- [Derivative] [Fraction - Numerator] Factor: [tex]\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}[/tex]
Topic: AP Calculus AB/BC
Unit: Derivatives
Book: College Calculus 10e