Respuesta :

Answer:

[tex]c^2 = 9dp[/tex]

Step-by-step explanation:

Given

[tex]dx^2 + cx + p = 0[/tex]

Let the roots be [tex]\alpha[/tex] and [tex]\beta[/tex]

So:

[tex]\alpha = 2\beta[/tex]

Required

Determine the relationship between d, c and p

[tex]dx^2 + cx + p = 0[/tex]

Divide through by d

[tex]\frac{dx^2}{d} + \frac{cx}{d} + \frac{p}{d} = 0[/tex]

[tex]x^2 + \frac{c}{d}x + \frac{p}{d} = 0[/tex]

A quadratic equation has the form:

[tex]x^2 - (\alpha + \beta)x + \alpha \beta = 0[/tex]

So:

[tex]x^2 - (2\beta+ \beta)x + \beta*\beta = 0[/tex]

[tex]x^2 - (3\beta)x + \beta^2 = 0[/tex]

So, we have:

[tex]\frac{c}{d} = -3\beta[/tex] -- (1)

and

[tex]\frac{p}{d} = \beta^2[/tex] -- (2)

Make [tex]\beta[/tex] the subject in (1)

[tex]\frac{c}{d} = -3\beta[/tex]

[tex]\beta = -\frac{c}{3d}[/tex]

Substitute [tex]\beta = -\frac{c}{3d}[/tex] in (2)

[tex]\frac{p}{d} = (-\frac{c}{3d})^2[/tex]

[tex]\frac{p}{d} = \frac{c^2}{9d^2}[/tex]

Multiply both sides by d

[tex]d * \frac{p}{d} = \frac{c^2}{9d^2}*d[/tex]

[tex]p = \frac{c^2}{9d}[/tex]

Cross Multiply

[tex]9dp = c^2[/tex]

or

[tex]c^2 = 9dp[/tex]

Hence, the relationship between d, c and p is: [tex]c^2 = 9dp[/tex]