Suppose P(t)represents the population of a certain mosquito colony, where. t is measured in days. The current population of the colony is known to be 574 mosquitos; that is, P(0)=574. If P'(0)=50 mosquitos per day, estimate the size of the population in 10 days.

Respuesta :

Answer:

The estimated size of the population in 10 days is of 1372 mosquitos.

Step-by-step explanation:

Population after t days:

The population after t days is given by:

[tex]P(t) = P(0)e^{rt}[/tex]

In which P(0) is the initial population and r is the growth rate, as a decimal.

P(0)=574.

So

[tex]P(t) = 574e^{rt}[/tex]

P'(0)=50

[tex]P^{\prime}(t) = 574re^{rt}[/tex]

Since P'(0)=50

[tex]574r = 50[/tex]

[tex]r = \frac{50}{574}[/tex]

[tex]r = 0.0871[/tex]

So

[tex]P(t) = 574e^{0.0871t}[/tex]

Estimate the size of the population in 10 days

This is P(10).

[tex]P(10) = 574e^{0.0871*10} = 1372[/tex]

The estimated size of the population in 10 days is of 1372 mosquitos.

The size of the population of mosquito follows an exponential model.

The size of the population in 10 days is 1370

The given parameters are:

[tex]\mathbf{P(0) = 574}[/tex]

[tex]\mathbf{P'(0) = 50}[/tex]

An exponential function is represented as:

[tex]\mathbf{P(t) = P(0) \times e^r^t}[/tex]

So, we have:

[tex]\mathbf{P(t) = 574 \times e^r^t}[/tex]

Differentiate

[tex]\mathbf{P'(t) = 574r}[/tex]

Substitute 0 for t

[tex]\mathbf{P'(0) = 574r}[/tex]

Substitute [tex]\mathbf{P'(0) = 50}[/tex]

[tex]\mathbf{50 = 574r}[/tex]

Divide both sides by 574

[tex]\mathbf{0.087 = r}[/tex]

So, we have:

[tex]\mathbf{r = 0.087 }[/tex]

The function becomes

[tex]\mathbf{P(t) = 574 \times e^r^t}[/tex]

[tex]\mathbf{P(t) = 574 \times e^{0.087t}}[/tex]

In 10 days, t = 10.

So, we have:

[tex]\mathbf{P(10) = 574 \times e^{0.087 \times 10}}[/tex]

[tex]\mathbf{P(10) = 574 \times e^{0.87}}[/tex]

Solve

[tex]\mathbf{P(10) = 1370}[/tex]

Hence, the size of the population in 10 days is 1370

Read more about exponential functions at:

https://brainly.com/question/11487261