Respuesta :
Answer:
Follows are the solution to the given points:
Step-by-step explanation:
Given value:
[tex]\to f_X (x) \ \ xe^{-x} \ , \ x>0[/tex]
For point a:
Moment generating function of X=?
Using formula:
[tex]\to M(t) =E(e^{tx})= \int^{\infty}_{-\infty} \ e^{tx} f(x) \ dx[/tex]
[tex]M(t) = \int^{\infty}_{-\infty} \ e^{tx}xe^{-x} \ dx = \int^{\infty}_{0} \ xe^{(t-1)x} \ dx[/tex]
integrating the values by parts:
[tex]u = x \\\\dv = e^{(t-1)x}\\\\dx =dx \\\\v= \frac{e^{(t-1)x}}{t-1}\\\\M(t) =[\frac{e^{(t-1)x}}{t-1}]^{-\infty}_{0} -\int^{\infty}_{0} \frac{e^{(t-1)x}}{t-1} \ dx\\\\[/tex]
[tex]= \frac{1}{t-1} (0) - [\frac{e^{(t-1)x}}{(t-1)^2}]^{\infty}_{0}\\\\=\frac{1}{(t-1)^2}(0-1)\\\\=\frac{1}{(t-1)^2}\\\\[/tex]
Therefore, the moment value generating by the function is [tex]=\frac{1}{(t-1)^2}[/tex]
In point b:
[tex]E(X^n)=?[/tex]
Using formula: [tex]E(X^n)= M^{n}_{X}(0)[/tex]
form point (a):
[tex]\to M_{X}(t)=\frac{1}{(t-1)^2}[/tex]
Differentiating the value with respect of t
[tex]M'_{X}(t)=\frac{-2}{(t-1)^3}[/tex]
when [tex]t=0[/tex]
[tex]M'_{X}(0)=\frac{-2}{(0-1)^3}= \frac{-2}{(-1)^3}= \frac{-2}{-1}=2\\\\M''_{X}(t)=\frac{(-2)(-3)}{(t-1)^4}\\\\M''_{X}(0)=\frac{(-2)(-3)}{(0-1)^4}= \frac{6}{(-1)^4}= \frac{6}{1}=6\\\\M''_{X}(t)=\frac{(-2)(-3)}{(t-1)^4}\\\\M''_{X}(0)=\frac{(-2)(-3)}{(0-1)^4}= \frac{6}{(-1)^4}= \frac{6}{1}=6\\\\M'''_{X}(t)=\frac{(-2)(-3)(-4)}{(t-1)^5}\\\\M''_{X}(0)=\frac{(-2)(-3)(-4)}{(0-1)^5}= \frac{24}{(-1)^5}= \frac{24}{-1}=-24\\\\\therefore \\\\M^{K}_{X} (t)=\frac{(-2)(-3)(-4).....(k+1)}{(t-1)^{k+2}}\\\\[/tex]
[tex]M^{K}_{X} (0)=\frac{(-2)(-3)(-4).....(k+1)}{(-1)^{k+2}}\\\\\therefore\\\\E(X^n) = \frac{(-2)(-3)(-4).....(n+1)}{(-1)^{n+2}}\\\\[/tex]