Answer:
[tex]P(x = 3) = 0.1700[/tex]
Explanation:
Given
[tex]n = 15[/tex]
[tex]p = 0.3[/tex]
Required
Determine P(x = 3)
This is calculated using:
[tex]P(x) = ^nC_xp^x(1-p)^{n-x}[/tex]
So, we have:
[tex]P(x = 3) = ^{15}C_3*0.3^3*(1-0.3)^{15-3}[/tex]
[tex]P(x = 3) = ^{15}C_3*0.3^3*(1-0.3)^{12}[/tex]
[tex]P(x = 3) = 455 *0.027*(0.7)^{12}[/tex]
[tex]P(x = 3) = 455 *0.027*0.0138412872[/tex]
[tex]P(x = 3) = 0.17004021325[/tex]
[tex]P(x = 3) = 0.1700[/tex]