Answer:
[tex]c(x) =400 + 3x[/tex]
[tex]r(x) = 12x[/tex]
[tex]x = 44.44[/tex]
Explanation:
Given
Cost
[tex]Equipment = 400[/tex]
[tex]Production = 3[/tex] per mouse pad
Revenue
[tex]Sales\ Price = 12[/tex]
Solving (a): The cost function
Let the number of mouse pad be x and the cost function be c(x).
[tex]c(x) =Equipment + Production * x[/tex]
[tex]c(x) =400 + 3 * x[/tex]
[tex]c(x) =400 + 3x[/tex]
Solving (b): The revenue function
Represent this with r(x)
[tex]r(x)= Sales\ Price * x[/tex]
[tex]r(x)= 12 * x[/tex]
[tex]r(x)= 12 x[/tex]
Solving (c): The break-even point
This is the point where r(x) = c(x)
So, we have:
[tex]12x = 400 + 3x[/tex]
Collect Like Terms
[tex]-3x+12x = 400[/tex]
[tex]9x = 400[/tex]
Solve for x
[tex]x = \frac{400}{9}[/tex]
[tex]x = 44.44[/tex]