Respuesta :

Answer:

(0,-4)

Step-by-step explanation:

Given

[tex]f(x) = x^\frac{1}{3} - 4[/tex]

Required

Determine the critical numbers

[tex]f(x) = x^\frac{1}{3} - 4[/tex]

Differentiate:

[tex]f'(x) = \frac{1}{3}x^{\frac{1}{3} - 1}[/tex]

[tex]f'(x) = \frac{1}{3}x^{-\frac{2}{3}}[/tex]

Equate to 0

[tex]f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = 0[/tex]

[tex]\frac{1}{3}x^{-\frac{2}{3}} = 0[/tex]

Multiply through by 3

[tex]3 * \frac{1}{3}x^{-\frac{2}{3}} = 0*3[/tex]

[tex]x^{-\frac{2}{3}} = 0[/tex]

[tex]x = 0[/tex]

Substitute 0 for x in [tex]f(x) = x^\frac{1}{3} - 4[/tex]

[tex]f(0) = 0^\frac{1}{3} - 4[/tex]

[tex]f(0) = 0- 4[/tex]

[tex]f(0) = - 4[/tex]

Hence, the critical point is: (0,-4)