Answer:
(0,-4)
Step-by-step explanation:
Given
[tex]f(x) = x^\frac{1}{3} - 4[/tex]
Required
Determine the critical numbers
[tex]f(x) = x^\frac{1}{3} - 4[/tex]
Differentiate:
[tex]f'(x) = \frac{1}{3}x^{\frac{1}{3} - 1}[/tex]
[tex]f'(x) = \frac{1}{3}x^{-\frac{2}{3}}[/tex]
Equate to 0
[tex]f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = 0[/tex]
[tex]\frac{1}{3}x^{-\frac{2}{3}} = 0[/tex]
Multiply through by 3
[tex]3 * \frac{1}{3}x^{-\frac{2}{3}} = 0*3[/tex]
[tex]x^{-\frac{2}{3}} = 0[/tex]
[tex]x = 0[/tex]
Substitute 0 for x in [tex]f(x) = x^\frac{1}{3} - 4[/tex]
[tex]f(0) = 0^\frac{1}{3} - 4[/tex]
[tex]f(0) = 0- 4[/tex]
[tex]f(0) = - 4[/tex]
Hence, the critical point is: (0,-4)