if d varies directly as t and d = 20.5 when t=12 find:(a) the value of the constant (b) the relationship between d and t (c) the value of d when t =6.​

Respuesta :

Answer:

(a) [tex]k=\frac{41}{24}[/tex]

(b) [tex]d=\frac{41}{24} t[/tex]

(c) [tex]d=\frac{41}{4}[/tex]

Explanation:

As d varies directly as t,

[tex]d=kt[/tex]

Here, k is a constant.

(a)

Put [tex]d=20.5\,,\,t=12[/tex]

[tex]20.5=12k\\\\k=\frac{41}{24}\\\\k= 1.71[/tex]

(b)

Put [tex]k=\frac{41}{24}[/tex] in [tex]d=kt[/tex]

[tex]d=\frac{41}{24} t[/tex]

(c)

Put [tex]t=6[/tex] in [tex]d=\frac{41}{24} t[/tex]

[tex]d=\frac{41}{24} (6)\\\\d=\frac{41}{4}[/tex]