Respuesta :

Answer:

[tex]b=3\sqrt{13}[/tex]

Step-by-step explanation:

In a right angled triangle, if a perpendicular is drawn from a vertex of the right angle then triangles on both sides of the perpendicular are similar.

In ΔPDY, ∠D = 90° and DM ⊥ PY

So, ΔPMD ≈ ΔDMY

If two triangles are similar then their corresponding sides are proportional.

[tex]\frac{PM}{DM}=\frac{MD}{MY}[/tex]

Put [tex]PM=4\,,\,DM=c\,,\,MD=c\,,\,MY=9[/tex]

So,

[tex]\frac{4}{c}=\frac{c}{9}\\\\c=36\\c=6[/tex]

According to Pythagoras theorem, square of hypotenuse is equal to sum of squares of the other two sides.

In ΔDMY,

[tex]DY^2=DM^2+MY^2\\b^2=c^2+9^2[/tex]

Put [tex]c=6[/tex]

[tex]b^2=6^2+9^2\\b^2=36+81\\b^2=117\\b=\sqrt{3^2(13)}\\b=3\sqrt{13}[/tex]