Respuesta :
Answer:
[tex]\boxed {\boxed {\sf 15}}[/tex]
Step-by-step explanation:
Distance is calculated using this formula:
[tex]d=\sqrt {(x_2-x_2)^2+(y_2-y_1)^2[/tex]
where (x₁, y₁) and (x₂, y₂) are the points. We are given (-3,8) and (-3,7). Therefore;
[tex]x_1= -3 \\y_1= 8 \\x_2= -3 \\y_2= -7[/tex]
Substitute the values into the formula.
[tex]d= \sqrt {(-3--3)^2+(-7-8)^2[/tex]
Solve inside the parentheses.
- -3 - - 3= -3+3= 0
- -7 - 8 = -15
[tex]d= \sqrt {(0)^2+(-15)^2[/tex]
Solve the exponents.
- 0²=0*0= 0
- -15²= -15*-15=225
[tex]d=\sqrt {0+225[/tex]
[tex]d=\sqrt {225[/tex][tex]d= \pm 15[/tex]
A negative number for distance doesn't make sense, so the distance must be 15.