Respuesta :

Answer:

[tex]DE = 15[/tex]

[tex]AB = 6[/tex]

Step-by-step explanation:

Given

See attachment for triangles

Required

Determine the lengths of DE and AB

To solve for DE, we make use of the following equivalent ratio

[tex]AC : BC =CE:DE[/tex]

Substitute values

[tex]8:5 = 24:DE[/tex]

Express as fraction

[tex]\frac{8}{5} = \frac{24}{DE}[/tex]

Cross Multiply

[tex]DE * 8 = 24 *5[/tex]

[tex]DE * 8 = 120[/tex]

[tex]DE = 120/8[/tex]

[tex]DE = 15[/tex]

To solve for AB, we make use of the following equivalent ratio

[tex]AB : BC =CD:DE[/tex]

Substitute values

[tex]AB : 5 = 18 : 15[/tex]

Express as fraction

[tex]\frac{AB}{5} = \frac{18}{15}[/tex]

Multiply by 5

[tex]5 * \frac{AB}{5} = \frac{18}{15}*5[/tex]

[tex]AB= \frac{18}{15}*5[/tex]

[tex]AB= \frac{18}{3}[/tex]

[tex]AB = 6[/tex]

Ver imagen MrRoyal