Respuesta :

Answer:

[tex]\frac{40}{27}[/tex]

Step-by-step explanation:

We need to evaluate the sum of the following finite geometric series.

We need to define r and [tex]a_{n}[/tex]

[tex]r = 1/3[/tex]

[tex]a_{n} =(\frac{1}{3} )^{n-1}[/tex]

Follow the geometric sequence sum formula and substitute :

[tex]1*\frac{1-(\frac{1}{3})^4 }{1-\frac{1}{3} }[/tex]

Simplify :

[tex]1 * \frac{3*\frac{80}{81} }{2}[/tex]

Get rid of the 1 :

[tex]\frac{3*\frac{80}{81} }{2}[/tex]

Multiply the numerators :

[tex]\frac{\frac{80}{27} }{2}[/tex]

Move the denominator of the fraction in the numerator and move it to the denominator of the whole fraction :

[tex]\frac{80}{27*2}[/tex]

Multiply the denominators :

[tex]\frac{80}{54}[/tex]

Simplify  by dividing both the numerator and denominator by 2 :

[tex]\frac{40}{27}[/tex]