50 POINTS FIRST GOOD ANSWER GETS BRAINLIEST
Express f(x)=3+|2x-5| as a piecewise function WITHOUT using absolute value
Please give a detailed response not just answer to help me understand

Respuesta :

Answer:

[tex]f(x)=3+|2x-5|=\left\{ \begin{array}{ll} 2x-2& \quad x \geq 5/2 \\ -2x+8 & \quad x < 5/2 \end{array} \right.[/tex]

Step-by-step explanation:

We are given the function:

[tex]f(x)=3+|2x-5|[/tex]

Remember that by the definition of absolute value:

[tex]\displaystyle |x|= \left\{ \begin{array}{ll} x & \quad x \geq 0 \\ - x & \quad x < 0 \end{array} \right.[/tex]

Our absolute value is:

[tex]|2x-5|[/tex]

First, we will find when it becomes 0. Set the equation equal to 0:

[tex]2x-5=0[/tex]

Solve for x:

[tex]x=5/2[/tex]

So, we can see that for all values greater than x = 5/2, 2x - 5 is positive.

For all values less than x = 5/2, 2x - 5 is negative.

Therefore (the positive case go above, and the negative case go below):

[tex]|2x-5|= \left\{ \begin{array}{ll} 2x-5 & \quad x \geq 5/2 \\ -(2x-5) & \quad x < 5/2 \end{array} \right.[/tex]

Finally, we can add a three:

[tex]f(x)=3+|2x-5|=\left\{ \begin{array}{ll} 3+(2x-5) & \quad x \geq 5/2 \\ 3+(-(2x-5)) & \quad x < 5/2 \end{array} \right.[/tex]

Simplify if desired:

[tex]f(x)=3+|2x-5|=\left\{ \begin{array}{ll} 2x-2& \quad x \geq 5/2 \\ -2x+8 & \quad x < 5/2 \end{array} \right.[/tex]