Respuesta :

Answer:

The second one

Step-by-step explanation:

I hope this helps...

The equivalent expression is required.

The second option is correct 4a²b²c³(∛b)

Exponents

The given expression is [tex]\sqrt[3]{64a^6b^7c^9}[/tex]

The rules that will be used to solve the question are

[tex]\sqrt[n]{x}=x^{\dfrac{1}{n}}[/tex]

[tex]\sqrt[n]{xy}=\sqrt[n]{x}\sqrt[n]{y}=x^{\dfrac{1}{n}}y^{\dfrac{1}{n}}[/tex]

[tex]64=2\times 2\times 2\times 2\times 2\times 2=2^6[/tex]

So,

[tex]\sqrt[3]{64a^6b^7c^9}\\ =\sqrt[3]{2^6a^6b^7c^9}\\ =(2^6a^6b^6bc^9)^{\dfrac{1}{3}}\\ =2^{6\times \dfrac{1}{3}}\cdot a^{6\times \dfrac{1}{3}}\cdot b^{6\times \dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\cdot c^{9\times \dfrac{1}{3}}\\ =2^2a^2b^2\sqrt[3]{b}c^3\\ =4a^2b^2c^3(\sqrt[3]{b})[/tex]

Learn more about exponents:

https://brainly.com/question/535578