Respuesta :

Answer:

B Or D

Step-by-step explanation:

The inverse function is [tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex] and the domain is [tex]x \ne 6[/tex]

The function is given as:

[tex]f(x) = \frac{1}{x - 4} - 6[/tex]

Express f(x) as y

[tex]y = \frac{1}{x - 4} - 6[/tex]

Swap the positions of x and y

[tex]x = \frac{1}{y - 4} - 6[/tex]

Add 6 to both sides

[tex]x + 6= \frac{1}{y - 4}[/tex]

Multiply both sides by y-4

[tex](x + 6)(y -4) =1[/tex]

Divide both sides by x + 6

[tex]y - 4 = \frac{1}{x + 6}[/tex]

Add 4 to both sides

[tex]y = \frac{1}{x + 6} + 4[/tex]

Rewrite as:

[tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex]

Hence, the inverse function is [tex]f^{-1}(x) = \frac{1}{x + 6} + 4[/tex] and the domain is [tex]x \ne 6[/tex]

Read more about inverse functions at:

https://brainly.com/question/8120556