Respuesta :

Answer:

[tex]Y = (4,9)[/tex]

Step-by-step explanation:

Given

[tex]W(x_1,y_1) = (-5, 2)[/tex]

[tex]Z(x_4,y_4) = (-7, -3)[/tex]

[tex]X(x_2,y_2) = (2, 4)[/tex]

Required

Find Y

To do this, we make use of the mid-point formula

i.e.

[tex]M = \frac{1}{2}(x_n+x_m,y_n+y_m})[/tex]

WX and ZY are the diagonals of the parallelogram.

The mid-point of WX is:

[tex]M = \frac{1}{2}(-5+2,2+4)[/tex]

[tex]M = \frac{1}{2}(-3,6)[/tex]

The mid-point of ZY is:

[tex]M = \frac{1}{2}(-7+x,-3+y)[/tex]

Equate both values of M

[tex]\frac{1}{2}(-3,6) = \frac{1}{2}(-7+x,-3+y)[/tex]

Multiply both sides by 2

[tex](-3,6) = (-7+x,-3+y)[/tex]

By comparison:

[tex]-7 + x = -3[/tex]

[tex]-3 + y = 6[/tex]

[tex]-7 + x = -3[/tex]

[tex]x = 7 -3[/tex]

[tex]x = 4[/tex]

[tex]-3 + y = 6[/tex]

[tex]y = 6 +3[/tex]

[tex]y = 9[/tex]

Hence:

[tex]Y = (4,9)[/tex]