Respuesta :

Answer:-

[tex]\pink{\bigstar}[/tex] The measure if x [tex]\large\leadsto\boxed{\tt\purple{43^{\circ}}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Measure of [tex]\angle[/tex] x

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

The given angles are made by a straight line. We know that the total angle made by a straight line is 180°.

Therefore, all the angles should sum upto 180°.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Working:-

➪ [tex]\sf (x + 31^{\circ}) + (x + 20^{\circ}) + (x) = 180^{\circ}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf x + 31^{\circ} + x + 20^{\circ} + x = 180^{\circ}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf 3x + 51^{\circ} = 180^{\circ}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf 3x = 180^{\circ} - 51^{\circ}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf 3x = 129^{\circ}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf x = \dfrac{129}{3}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]\large{\bold\red{x = 43^{\circ}}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the measure of the x is 43°.

Step-by-step explanation:

[tex]we \: know \: that \: sum \: of \: angles \: in \: a \: line \: = 180 \\ so \\ x + 31 + x + 20 + x = 180 \\ 3x + 51 = 180 \\ 3x = 180 - 51 \\ 3x = 129 \\ x = \frac{129}{3} \\ x = 43degree \\ thank \: you[/tex]