An electron is constrained to the central axis of a ring of charge 1 coulomb and of radius 1 meter. The electrostatic force exerted on the electron can cause the electron to oscillate through the center of the ring. Find the frequency in Hertz of small-amplitude oscillation of the electron through the center of the ring.

Respuesta :

The frequency of the electron is :

 [tex]$\omega = 3.34 \times 10^{10} \ Hz$[/tex]

Determining the frequency of the electron :

The magnitude of the electric field at a point on the [tex]z[/tex] a-x-is is given by :

[tex]$E=\frac{q|z|}{4 \pi \epsilon_0(z^2+R^2)^{3/2}}$[/tex]

Force on the electron is :

[tex]$F_z=(-e)E_z[/tex]

     [tex]$=\frac{-eqz}{4 \pi \epsilon_0(z^2+R^2)^{3/2}}$[/tex]

Now if z is very small,

[tex]$(z^2+R^2)^{3/2} \sim (R^2)^{3/2}=R^3$[/tex]

[tex]$F_z = \frac{-eqz}{4 \pi \epsilon_0 R^3} = - \left(\frac{eq}{4 \pi \epsilon_0 R^3 \right)z}$[/tex]

Comparing the equation with

[tex]$F_z=-kz$[/tex]

Similarly using,

[tex]$k=\frac{eq}{4 \pi \epsilon_0 R^3}$[/tex]

[tex]$\omega =\sqrt{\frac{k}{m}} $[/tex]

  [tex]$=\sqrt{\frac{eq}{4 \pi \epsilon_0 R^3 m}}$[/tex]

  [tex]$=\sqrt{\frac{1.6 \times 10^{-19}\times 1}{4 \pi \epsilon_0 \times 1^3 \times 9.1 \times 10^{-31}}}$[/tex]

  [tex]$= 3.977 \times 10^{10} \ Hz$[/tex]

The electric field on the a-x-is of a square is given by

[tex]$E_z=\frac{\lambda z a}{4 \pi \epsilon_0 k^2 \sqrt{k^2+\frac{a^2}{4}}}$[/tex]

   [tex]$=\frac{4\lambda z a}{4 \pi \epsilon_0 \left(z^2+\frac{a^2}{4}\right) \sqrt{z^2+\frac{a^2}{2}}}$[/tex]

If we as-sumed that   [tex]$ z << a$[/tex]

[tex]$E_z=\frac{4 \lambda a \times 4 \sqrt z}{4 \pi \epsilon_0 a^3}z$[/tex]

[tex]$\omega = \sqrt{\frac{k}{m}}$[/tex]

   [tex]$=\sqrt{\frac{16 \sqrt z \lambda q}{4 \pi \epsilon_0 a^2 m}}$[/tex]

here,

[tex]$\lambda = 1/8, a = 2$[/tex]

[tex]$\omega = 3.34 \times 10^{10} \ Hz$[/tex]

Learn more about "frequency" here :

https://brainly.com/question/25699025