Use the intermediate value theorem to find the value of c such that f(c) = M. f(x) = x^2 - x + 1 text( on ) [1,8]; M = 21 c =

Respuesta :

Answer:

[tex]c = 5[/tex]

Step-by-step explanation:

Given

[tex]f(c) = M[/tex]

[tex]f(x) = x^2 - x + 1[/tex]

[tex]Interval: [1,8][/tex]

[tex]M = 21[/tex]

Required

Find c using Intermediate Value theorem

First, check if the value of M is within the given range:

[tex]f(x) = x^2 - x + 1[/tex]

[tex]f(1) = 1^2 - 1 + 1[/tex]

[tex]f(1) = 1[/tex]

[tex]f(x) = 8^2 - 8 + 1[/tex]

[tex]f(x) = 57[/tex]

[tex]1 \le M \le 57[/tex]

[tex]1 \le 21 \le 57[/tex]

M is within range.

Solving further:

We have:

[tex]f(c) = f(x) = M[/tex]

[tex]f(x) = 21[/tex]

Substitute 21 for f(x) in [tex]f(x) = x^2 - x + 1[/tex]

[tex]21 = x^2 - x + 1[/tex]

Express as quadratic function

[tex]x^2 - x + 1 - 21 = 0[/tex]

[tex]x^2 - x - 20 = 0[/tex]

Expand

[tex]x^2 + 4x - 5x - 20[/tex]

[tex]x(x+4)-5(x+4)=0[/tex]

[tex](x - 5)(x+4) = 0[/tex]

[tex]x - 5 = 0[/tex] or [tex]x + 4= 0[/tex]

[tex]x = 5[/tex] or [tex]x = -4[/tex]

The value of [tex]x = -4[/tex] is outside the [tex]Interval: [1,8][/tex]

So:

[tex]x = 5[/tex]

[tex]f(c) = f(x) = M[/tex]

[tex]f(c) = f(5) = 21[/tex]

By comparison:

[tex]c = 5[/tex]