Respuesta :

Answer:

x = 10

[tex] m\angle DCE=55\degree [/tex]

Step-by-step explanation:

Since, CE bisects angle DCF, therefore:

[tex] m\angle ECF= m\angle DCE[/tex]

[tex] 6x-5=4x + 15 [/tex]

[tex] 6x-4x=5 + 15 [/tex]

[tex] 2x=20 [/tex]

[tex] x=\frac{20}{2} [/tex]

[tex] x=10[/tex]

[tex] m\angle DCE=(4x+15)\degree [/tex]

[tex] m\angle DCE=(4\times 10+15)\degree [/tex]

[tex] m\angle DCE=(40+15)\degree [/tex]

[tex] m\angle DCE=55\degree [/tex]