Respuesta :

Given:

[tex](\sec \theta \cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta[/tex]

To prove:

The given statement.

Proof:

We have,

[tex](\sec \theta -\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta[/tex]

Taking LHS, we get

[tex]LHS=(\sec \theta -\cos \theta)(\cot \theta+\tan \theta)[/tex]

[tex]LHS=(\dfrac{1}{\cos \theta }-\cos \theta)(\dfrac{\cos \theta}{\sin \theta}+\dfrac{\sin \theta}{\cos \theta})[/tex]

[tex]LHS=(\dfrac{1-\cos^2 \theta }{\cos \theta })(\dfrac{\cos^2 \theta+\sin^2 \theta}{\sin \theta\cos \theta})[/tex]

[tex]LHS=(\dfrac{\sin^2 \theta }{\cos \theta })(\dfrac{1}{\sin \theta\cos \theta})[/tex]          [tex][\because \cos^2 \theta+\sin^2 \theta=1][/tex]

[tex]LHS=(\dfrac{\sin \theta }{\cos \theta })(\dfrac{1}{\cos \theta})[/tex]

[tex]LHS=\tan \theta \sec \theta[/tex]

[tex]LHS=RHS[/tex]

Hence proved.