Respuesta :

Answer:

43.5 cm² and 112 cm²

Step-by-step explanation:

Here the instructions aren't given what to do. So I am finding the area of the ∆s .

Area of first :-

  • A = 1/2 * b * h
  • A = 1/2 * 14.5 cm * 6cm
  • A = 3 × 14.5 cm²
  • A = 43.5 cm²

Area of second :-

  • A = 1/2 * ( sum of || sides) * h
  • A = 1/2 * ( 9 cm + 19cm) * 8cm
  • A = 4cm * 28cm
  • A = 112 cm²
Nayefx

Answer:

[tex] \displaystyle 3) \boxed{ \rm {43.5 \: cm}^{2} }[/tex]

[tex] \displaystyle 4)\rm \boxed{112 {cm}^{2} }[/tex]

Step-by-step explanation:

Question-1:

we are given a triangle and we want to figure out the area of it Since we are given the base and the height we can consider the following formula

[tex] \displaystyle \frac{1}{2} bh[/tex]

from the triangle we can assume base and height as 14.5 and 8 respectively Thus substitute:

[tex] \displaystyle \frac{1}{2} (14.5cm)(6cm)[/tex]

reduce fraction:

[tex] \displaystyle (14.5cm)(3cm)[/tex]

simplify multiplication:

[tex] \displaystyle \boxed{ \rm {43.5 \: cm}^{2} }[/tex]

Question-2:

our given shape is trapezoid

therefore recall that,

[tex] \displaystyle A _{ \text{trapezoid}} = \frac{a + b}{2} h[/tex]

from the shape we define that

  • [tex]a = 9[/tex]
  • [tex]b = 19[/tex]
  • [tex]h = 8[/tex]

now substitute:

[tex] \displaystyle \rm A _{ \text{trapezoid}} = \frac{9cm + 19cm}{2} (8cm)[/tex]

reduce fraction:

[tex] \displaystyle \rm A _{ \text{trapezoid}} = (9cm + 19cm)(4cm)[/tex]

simplify addition:

[tex] \displaystyle \rm A _{ \text{trapezoid}} = (28cm)(4cm)[/tex]

simplify multiplication:

[tex] \displaystyle \rm A _{ \text{trapezoid}} = \boxed{112 {cm}^{2} }[/tex]