Respuesta :

Answer:

The solution to the system of equations be:

  • (x, y) = (8, -1)

Step-by-step explanation:

Given the system of equations

[tex]x-2y = 10[/tex]

x + 3y = 5

Solving the system of equations using the elimination method

[tex]\begin{bmatrix}x-2y=10\\ x+3y=5\end{bmatrix}[/tex]

subtracting the equations

[tex]x+3y=5[/tex]

[tex]-[/tex]

[tex]\underline{x-2y=10}[/tex]

[tex]5y=-5[/tex]

solving 5y = -5 for y

[tex]5y=-5[/tex]

Divide both sides by 5

[tex]\frac{5y}{5}=\frac{-5}{5}[/tex]

Simplify

[tex]y=-1[/tex]

For x - 2y = 10 plug in y = -1

[tex]x-2\left(-1\right)=10[/tex]

Apply rule  -a(-a) = a

[tex]x+2\cdot \:1=10[/tex]

Multiply the numbers:  [tex]2\cdot \:1=2[/tex]

[tex]x+2=10[/tex]

subtract 2 from both sides

[tex]x+2-2=10-2[/tex]

Simplify

[tex]x=8[/tex]

Therefore, the solution to the system of equations be:

  • (x, y) = (8, -1)

The graph of the solution to the system of equations is also attached below.

Ver imagen asifjavedofficial