What is the volume of David’s box?

Answer:
H. [tex]6x^{7} y^{15}[/tex]
Step-by-step explanation:
The formula for volume is V = (length)(width)(height)
So, the volume is: V = ([tex]3x^{2}y^{4}[/tex])([tex]4x^{2}y^{5}[/tex])([tex]\frac{1}{2} x^{3}y^{6}[/tex])
We can multiple the coefficients 3, 4, and 1/2, which is 6
We know that [tex]x^{a} +x^{b} =x^{a+b}[/tex], so multiplying [tex]x^{2}[/tex], [tex]x^{2}[/tex], and [tex]x^{3}[/tex] will give us [tex]x^{7}[/tex].
Similarly, multiplying [tex]y^{4}[/tex], [tex]y^{5}[/tex] , and [tex]y^{6}[/tex] will give us [tex]y^{15}[/tex].
Altogether, our volume would be [tex]6x^{7} y^{15}[/tex]