Respuesta :

Answer:

[tex]Area = 27.5[/tex]

Step-by-step explanation:

Given

[tex]J_{Area} = 440[/tex]

[tex]J_{Width} = 22[/tex]

[tex]K_{Width} = 5.5[/tex]

See attachment

Required

Determine the area of K

First, we need to calculate the length of the rectangle  J

[tex]J_{Length} * J_{Width} = J_{Area}[/tex]

This gives:

[tex]J_{Length} * 22 = 440[/tex]

Divide both sides by 22

[tex]\frac{J_{Length} * 22}{22} = \frac{440}{22}[/tex]

[tex]J_{Length} = 20[/tex]

So, the length of the rectangle J is 20.

Since both shapes are similar, then:

[tex]J_{Length} : J_{Width} = K_{Length} : `K_{Width}[/tex]

Substitute the known values:

[tex]20 : 22 = K_{Length} : `5.5[/tex]

Express as fraction:

[tex]\frac{20 }{ 22 }= \frac{K_{Length} }{ `5.5}[/tex]

Make Length, the subject of formula

[tex]K_{Length} = \frac{5.5 * 20}{22}[/tex]

[tex]K_{Length} = \frac{110}{22}[/tex]

[tex]K_{Length} = 5[/tex]

The area of K is:

[tex]Area = K_{Length} * K_{Width[/tex]

[tex]Area = 5.5 * 5[/tex]

[tex]Area = 27.5[/tex]

Ver imagen MrRoyal