Respuesta :

Answer:

The terms of the sequence are x=5 and a=2:

[tex] x + (x + a) + (x + 2a) = 21 [/tex]  →  [tex] 5 + (5 + 2) + (5 +2*2) = 21 [/tex]

[tex] x*(x + a)*(x + 2a) = 315 [/tex]  →  [tex] 5*(5 + 2)*(5 + 2*2) = 315 [/tex]

Step-by-step explanation:

We can find the terms of the following sequence:

[tex] x + (x + a) + (x + 2a) = 21 [/tex]

[tex] 3x + 3a = 21 [/tex]      

[tex] x + a = 7 [/tex]      (1)

The product of that sequence is:

[tex] x*(x + a)*(x + 2a) = 315 [/tex]    (2)

Solving equation (1) for x:

[tex] x = 7 - a [/tex]  (3)

And by entering (3) into (2):

[tex] (7 - a)*(7 - a + a)*(7 - a + 2a) = 315 [/tex]  

[tex] 7*(7^{2} - a^{2}) = 315 [/tex]  

[tex] 343 - 7a^{2} = 315 [/tex]    

[tex] a = 2 [/tex]  

Now, by entering "a" into equation (3):

[tex] x = 7 - 2 = 5 [/tex]  

Therefore, the terms of the sequence are x=5 and a=2.

I hope it helps you!