Answer:
[tex]Height =3[/tex]
Step-by-step explanation:
Given
[tex]Length = x + 2[/tex]
[tex]Width = x - 2[/tex]
[tex]Height = x[/tex]
[tex]Volume = 15[/tex]
Required
Find the height
The volume is calculated as thus:
[tex]Volume = Length * Width * Height[/tex]
This gives
[tex]15 = (x + 2) * (x - 2) * x[/tex]
Apply difference of two squares
[tex]15 =(x^2 - 4 ) * x[/tex]
[tex]15 = x^3 - 4x[/tex]
Subtract 15 from both sides
[tex]x^3 - 4x - 15 = 0[/tex]
Using a calculator to factorize, we have:
[tex](x-3)(x^2+3x+5) = 0[/tex]
Split
[tex]x - 3 = 0[/tex] or [tex]x^2 + 3x + 5 = 0[/tex]
[tex]x = 3[/tex] or [tex]x^2 + 3x + 5 = 0[/tex]
x has complex roots for [tex]x^2 + 3x + 5 = 0[/tex]
Hence:
[tex]x = 3[/tex]
Recall that:
[tex]Height = x[/tex]
[tex]Height =3[/tex]