Given:
The expression is:
[tex]\dfrac{-8x^{18}}{4x^6}[/tex]
To find:
The simplified form of the given expression.
Solution:
We have,
[tex]\dfrac{-8x^{18}}{4x^6}[/tex]
It can be written as
[tex]\dfrac{-8x^{18}}{4x^6}=\dfrac{-8x^{6+12}}{4x^6}[/tex]
[tex]\dfrac{-8x^{18}}{4x^6}=\dfrac{-(2)(4)x^6x^{12}}{4x^6}[/tex] [tex][a^{m+n}=a^ma^n][/tex]
Cancel out the common factors.
[tex]\dfrac{-8x^{18}}{4x^6}=\dfrac{-2x^{12}}{1}[/tex]
[tex]\dfrac{-8x^{18}}{4x^6}=-2x^{12}[/tex]
Therefore, the simplified form of the given expression is [tex]-2x^{12}[/tex].