Respuesta :

Space

Answer:

[tex]\displaystyle A = \frac{8}{21}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Graphing
  • Solving systems of equations

Calculus

Area - Integrals

Integration Rule [Reverse Power Rule]:                                                                 [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                      [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Addition/Subtraction]:                                                          [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

*Note:

Remember that for the Area of a Region, it is top function minus bottom function.

Step 1: Define

f(x) = x²

g(x) = x⁶

Bounded (Partitioned) by x-axis

Step 2: Identify Bounds of Integration

Find where the functions intersect (x-values) to determine the bounds of integration.

Simply graph the functions to see where the functions intersect (See Graph Attachment).

Interval: [-1, 1]

Lower bound: -1

Upper Bound: 1

Step 3: Find Area of Region

Integration

  1. Substitute in variables [Area of a Region Formula]:                                     [tex]\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx[/tex]
  2. [Area] Rewrite [Integration Property - Subtraction]:                                     [tex]\displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx[/tex]
  3. [Area] Integrate [Integration Rule - Reverse Power Rule]:                           [tex]\displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}[/tex]
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                    [tex]\displaystyle A = \frac{2}{3} - \frac{2}{7}[/tex]
  5. [Area] Subtract:                                                                                               [tex]\displaystyle A = \frac{8}{21}[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)  

Unit: Area Under the Curve - Area of a Region (Integration)  

Book: College Calculus 10e

Ver imagen Space