Respuesta :
Answer:
[tex]\displaystyle A = \frac{8}{21}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
Calculus
Area - Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
*Note:
Remember that for the Area of a Region, it is top function minus bottom function.
Step 1: Define
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
Step 2: Identify Bounds of Integration
Find where the functions intersect (x-values) to determine the bounds of integration.
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
Step 3: Find Area of Region
Integration
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx[/tex]
- [Area] Rewrite [Integration Property - Subtraction]: [tex]\displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx[/tex]
- [Area] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}[/tex]
- [Area] Evaluate [Integration Rule - FTC 1]: [tex]\displaystyle A = \frac{2}{3} - \frac{2}{7}[/tex]
- [Area] Subtract: [tex]\displaystyle A = \frac{8}{21}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e
