Triangle DEF is on a coordinate plane with its
vertices located at D( – 3,5), E( – 3, - 2), and
F(3,0). What is the area of ADEF in square
units?​

Respuesta :

Answer:

[tex]21\ \text{square units}[/tex]

Step-by-step explanation:

The points are [tex]D(-3,5), E(-3,-2)[/tex] and [tex]F(3,0)[/tex].

Area of a triangle is given by

[tex]A=\dfrac{D_x(E_y-F_y)+E_x(F_y-D_y)+F_x(D_y-E_y)}{2}[/tex]

[tex]\Rightarrow A=\dfrac{-3(-2-0)+-3(0-5)+3(5-(-2))}{2}[/tex]

[tex]\Rightarrow A=21\ \text{square units}[/tex]

The area of the given triangle is [tex]21\ \text{square units}[/tex].