Andrew knows that exactly two of the equations $x(3+4)=4(x+3),$ $4x+5=3(x+2),$ and $(x+2)+5(x-1)=3(x+3)$ are true. What is the value of $x?$

Respuesta :

Answer:

[tex]4[/tex]

Step-by-step explanation:

The equations are

[tex]x(3+4)=4(x+3)\\\Rightarrow 7x=4x+12\\\Rightarrow x=\dfrac{12}{7-4}\\\Rightarrow x=4[/tex]

[tex]4x+5=3(x+2)\\\Rightarrow 4x+5=3x+6\\\Rightarrow x=1[/tex]

[tex](x+2)+5(x-1)=3(x+3)\\\Rightarrow x+2+5x-5=3x+9\\\Rightarrow 6x-3=3x+9\\\Rightarrow 3x=12\\\Rightarrow x=4[/tex]

The two equations that are true are [tex]x(3+4)=4(x+3)[/tex] and [tex](x+2)+5(x-1)=3(x+3)[/tex] and the value of [tex]x[/tex] is [tex]4[/tex].