Answer:
K(3,2).
Step-by-step explanation:
We want to find a point K(x,y).
JK = 3/5 JL.
This means that:
[tex]K - J = \frac{3(L - J)}{5}[/tex]
We use this to find both the x-coordinate and the y-coordinate of K.
x-coordinate:
x-coordinate of J: -3
x-coordinate of L: 7
[tex]K - J = \frac{3(L - J)}{5}[/tex]
[tex]x - (-3) = \frac{3(7 - (-3))}{5}[/tex]
[tex]x + 3 = 6[/tex]
[tex]x = 3[/tex]
y-coordinate:
y-coordinate of J: -4
y-coordinate of L: 6
[tex]K - J = \frac{3(L - J)}{5}[/tex]
[tex]y - (-4) = \frac{3(6 - (-4))}{5}[/tex]
[tex]y + 4 = 6[/tex]
[tex]y = 2[/tex]
The point is K(3,2).