A cosine function has a period of 5π6, an amplitude of 6, and a vertical translation 5 units down. The function is not reflected over the x-axis.


What is the equation for this cosine function?

Respuesta :

Answer:

The equation is "[tex]y=6 \ Cos(\frac{12}{5}x)-5[/tex]". A further explanation is described below.

Step-by-step explanation:

The given values are:

Period,

B = [tex]\frac{5 \pi}{6}[/tex]

  = [tex]\frac{12}{5}[/tex]

Amplitude,

A = 6

Vertical translation down,

D = -5

As we know,

The equation of cosine function will be:

⇒  [tex]y=A \ Cos(Bx)+D[/tex]

On substituting the values in the above equation, we get

⇒  [tex]y=6 \ Cos(\frac{12}{5}x)+(-5)[/tex]

⇒  [tex]y=6 \ Cos(\frac{12}{5}x )-5[/tex]