Point C open parentheses 4 comma space 2 close parentheses divides the line segment joining points A open parentheses 2 comma space minus 1 close parentheses and B open parentheses x comma space y close parentheses such that A C : C B equal 3 : 1. What are the coordinates of point B?

Respuesta :

Question:

Point C (4,2) divides the line segment joining points A(2,-1) and B(x, y) such that AC:  CB = 3:1.

What are the coordinates of point B?

Answer:

[tex]B = (\frac{14}{3},3)[/tex]

Step-by-step explanation:

Given

[tex]C = (4,2)[/tex]

[tex]A = (2,-1)[/tex]

[tex]AC : CB = 3 : 1[/tex]

Required

Find the coordinates of B

Coordinates of a line segment is calculated using:

[tex](x,y) = (\frac{mx_2+nx_1}{n+m}, \frac{my_2 + ny_1}{n+m})[/tex]

In this case:

[tex](x,y) = (4,2)[/tex]

[tex]AC:CB = m : n = 3:1[/tex]

[tex]A = (2,-1)[/tex] --- [tex](x_1,y_1)[/tex]

The equation becomes

[tex](4,2) = (\frac{3x_2+2}{1+3}, \frac{3y_2 - 1}{1+3})[/tex]

So, the coordinates of B is: [tex](x_2,y_2)[/tex]

Solving further

[tex](4,2) = (\frac{3x_2+2}{4}, \frac{3y_2 - 1}{4})[/tex]

Multiply through by 4

[tex]4 * (4,2) = (\frac{3x_2+2}{4}, \frac{3y_2 - 1}{4}) * 4[/tex]

[tex](16,8) = (3x_2+2, 3y_2 - 1)[/tex]

By comparison:

[tex]3x_2 + 2 = 16[/tex]

[tex]3y_2 - 1 = 8[/tex]

So:

[tex]3x_2 + 2 = 16[/tex]

[tex]3x_2 = 16 - 2[/tex]

[tex]3x_2 = 14[/tex]

[tex]x_2 = \frac{14}{3}[/tex]

[tex]3y_2 - 1 = 8[/tex]

[tex]3y_2 = 8+1[/tex]

[tex]3y_2 = 9[/tex]

[tex]y_2 = 3[/tex]

The coordinates of B is:

[tex]B = (\frac{14}{3},3)[/tex]