Respuesta :

Answer:

Step-by-step explanation:

From table 1,

f(x) = bˣ

For x = -1,

f(-1) = 0.5

0.5 = (b)⁻¹

b = [tex]\frac{1}{0.5}[/tex]

b = 2

For x = 1.585,

f(1.585) = 3

3 = [tex]2^{1.585}[/tex]

3 = [tex]2^{1}\times2^{0.585}[/tex]

[tex]2^{0.585}=\frac{3}{2}[/tex]

[tex]2^{0.585}=1.5[/tex]

For x = 2.585,

f(2.585) = [tex]2^{2.585}[/tex]

             = [tex]2^{2}\times 2^{0.585}[/tex]

             = 4 × 1.5 [Since, [tex]2^{0.585}=1.5[/tex]]

             = 6

From table 2,

g(x) = [tex]\text{log}_b(x)[/tex]

For x = 0.5,

g(0.5) = -1

-1 = [tex]\text{log}_b(0.5)[/tex]

b⁻¹ = 0.5

b = 2

For x = 2,

g(2) = 1

1 = [tex]\text{log}_2(2)[/tex]

For x = 6,

g(6) = 2.585

2.585 = [tex]\text{log}_2(6)[/tex]

2.585 = [tex]\text{log}_2(2\times 3)[/tex]

2.585 = [tex]\text{log}_2(2)+\text{log}_2(3)[/tex]

2.858 - 1 = [tex]\text{log}_2(3)[/tex]

[tex]\text{log}_2(3)=1.585[/tex]

For x = 3,

g(3) = [tex]\text{log}_2(3)[/tex]

g(3) = 1.585