Respuesta :

Answer:

a) OP:RT = 10:3

b) OQ = 15 cm

c) m<P = [tex]60^{o}[/tex]

d) m<Q = [tex]94^{o}[/tex]

Step-by-step explanation:

Given that: ΔOPQ is similar to ΔRTS

Then;

a) OP:RT = 12:3.6

                 = [tex]\frac{120}{36}[/tex]

                = [tex]\frac{10}{3}[/tex]

                = 10:3

The ratio of OP to RT is 10:3.

b) The measure of length OQ = [tex]\frac{10}{3}[/tex] x 4.5

                                 = 15 cm

c) m<P ≅ m<T

So that,

m<P = [tex]60^{o}[/tex]

d) m<Q ≅ m<S

But,

26 + 60 + m<S = 180 (sum of angles in a triangle)

86 + m<S = 180

m<S = 180 - (86)

        = [tex]94^{o}[/tex]

Thus,

m<Q = [tex]94^{o}[/tex]