A roller skater of 47kg moving with a velocity of 12 m/s to the east picks up a bag of 6.0 kg. What is the final velocity of the person traveling with the basket? show your work HINT: Use the law of conservation of momentum in the perfectly inelastic collision m1v1i + m2v2i = (m1+m2) vf


plz guys i have exam now answer her quikly

Respuesta :

Answer:

v_f = 10.85 m/s

Explanation:

We will apply the law of conservation of momentum here:

[tex]m_{1}v_{1i} + m_{2}v_{2i} = m_{1}v_{1f}+m_{2}v_{2f}\\[/tex]

where,

m₁ = mass of roller skater = 47 kg

m₂ = mass of bag = 6 kg

v_1i = initial speed of roller skater = 12 m/s

v_2i = initial speed of the bag = 0 m/s

v_1f = final speed of the roller skater = ?

v_2f = final speed of the bag = ?

Both the bag and the skater will have same speed at the end because kater is carrying the bag:

v_1f = v_2f = v_f

Therefore, the equation will become:

[tex](47\ kg)(12\ m/s)+(6\ kg)(0\ m/s)=(47\ kg)(v_{f})+(5\ kg)(v_{f})\\564\ N.s = (47\ kg+5\ kg)(v_{f})\\v_{f} = \frac{564\ N.s}{52\ kg}\\[/tex]

v_f = 10.85 m/s