Respuesta :
Question:
[tex]\triangle[/tex]HLI is shown. Line segment JK is drawn near point L to create [tex]\triangle[/tex]JLK. If [tex]\triangle[/tex]HLI ~ [tex]\triangle[/tex]JLK by the SSS similarity theorem, then [tex]\frac{HL}{JL} =\frac{IL}{KL}[/tex] is also equal to which ratio?
[tex]\frac{H I}{J K}[/tex] [tex]\frac{H J}{J L}[/tex] [tex]\frac{I K}{K L}[/tex] [tex]\frac{J K}{H I}[/tex]
Answer:
[tex]\frac{H I}{J K}[/tex]
Step-by-step explanation:
Given
HLI ~ [tex]\triangle[/tex]JLK
[tex]\frac{HL}{JL} =\frac{IL}{KL}[/tex]
Required
Which other ratio equals [tex]\frac{HL}{JL} =\frac{IL}{KL}[/tex]
[tex]\triangle[/tex]HLI ~ [tex]\triangle[/tex]JLK implies that:
HL, IL and HI corresponds to JL, KL and JK respectively.
So, the possible ratios are:
HL : IL : HI = JL : KL : JK
Convert to fractions
[tex]\frac{HL}{JL} = \frac{IL}{KL} = \frac{HI}{JK}[/tex]
So, from the list of options
[tex]\frac{H I}{J K}[/tex] is equivalent to [tex]\frac{HL}{JL} =\frac{IL}{KL}[/tex]