Respuesta :
Answer:
[tex] \sf \huge \boxed{ \boxed{(3x - 7)(x + 1)}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- factoring
- PEMDAS
let's solve:
- [tex] \sf \: rewrite \: - 4x \: as \: 3x - 7 x: \\ \sf {3x}^{2} + 3x - 7x - 7[/tex]
- [tex] \sf factor \: out \: 3x: \\ \sf3x( x + 1) - 7x - 7[/tex]
- [tex] \sf factor \: out \: - 7: \\ \sf3x( x + 1) - 7(x + 1)[/tex]
- [tex] \sf \: group : \\ (3x - 7)(x + 1)[/tex]
and we are done!
Explanation:
1.) Use the sum-pruduct pattern
3x^2-4x-7
3x^2+3x-7x -7
Common factor from two pairs
3x^2 +3x-7x-7
3x(x+1) - 7(x+1
Rewrite in factored form
3x(x+1) - 7(x+1)
(3x-7) (x+1)
Answer: