Respuesta :

Nayefx

Answer:

[tex] \sf \huge \boxed{ \boxed{(3x - 7)(x + 1)}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • factoring
  • PEMDAS

let's solve:

  • [tex] \sf \: rewrite \: - 4x \: as \: 3x - 7 x: \\ \sf {3x}^{2} + 3x - 7x - 7[/tex]
  • [tex] \sf factor \: out \: 3x: \\ \sf3x( x + 1) - 7x - 7[/tex]
  • [tex] \sf factor \: out \: - 7: \\ \sf3x( x + 1) - 7(x + 1)[/tex]
  • [tex] \sf \: group : \\ (3x - 7)(x + 1)[/tex]

and we are done!

Explanation:

1.) Use the sum-pruduct pattern

3x^2-4x-7

3x^2+3x-7x -7

Common factor from two pairs

3x^2 +3x-7x-7

3x(x+1) - 7(x+1

Rewrite in factored form

3x(x+1) - 7(x+1)

(3x-7) (x+1)

Answer:

(3x-7)(x+1) I know we both have the same answer