Respuesta :
there are multiple test versions of these:
16r^6s^3/8r^2s^6 answer = B. 2r^4/s^3
(4m^5n^2/m^n)^3 answer = A. 64m^9n^3
cd^4/c^2d^8 answer = C. 1/cd^4
The expression equivalent to [tex]\frac{15}{x - 6} + \frac{7}{x + 6}[/tex] is (d) [tex]\frac{22x+ 48}{x^2 - 36}[/tex], if no denominator equals zero
The expression is given as:
[tex]\frac{15}{x - 6} + \frac{7}{x + 6}[/tex]
Take LCM of the above expression
[tex]\frac{15}{x - 6} + \frac{7}{x + 6} = \frac{15(x + 6) + 7(x - 6)}{(x - 6)(x + 6)}[/tex]
Expand
[tex]\frac{15}{x - 6} + \frac{7}{x + 6} = \frac{15x + 90 + 7x - 42}{x^2 - 36}[/tex]
Collect like terms
[tex]\frac{15}{x - 6} + \frac{7}{x + 6} = \frac{15x + 7x+ 90 - 42}{x^2 - 36}[/tex]
Evaluate the like terms
[tex]\frac{15}{x - 6} + \frac{7}{x + 6} = \frac{22x+ 48}{x^2 - 36}[/tex]
Hence, the expression equivalent to [tex]\frac{15}{x - 6} + \frac{7}{x + 6}[/tex] is (d) [tex]\frac{22x+ 48}{x^2 - 36}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832