(Picture for problem above.)

Find the value of y. Be sure to keep the exact value (use square root and don’t round your answer).

Picture for problem above Find the value of y Be sure to keep the exact value use square root and dont round your answer class=

Respuesta :

Answer:

y = 8·√3

Step-by-step explanation:

From the drawing of the right triangle, we have;

The length of the opposite leg to the given 60° (reference) angle = 12

The length of the adjacent leg to given 60° (reference) angle = x

The length of the hypotenuse side = y

By trigonometric ratios, we have;

[tex]sin(Reference \, Angle) = \dfrac{Opposite \ leg \ length}{Hypotenuse \ length}[/tex]

Therefore, we have;

[tex]sin(60^\circ) = \dfrac{12}{y}[/tex]

From the value of sin(60°), we have;

[tex]sin(60^\circ) = \dfrac{\sqrt{3} }{2}[/tex]

[tex]\therefore y= \dfrac{12}{sin(60^\circ) } = \dfrac{12}{\dfrac{\sqrt{3} }{2} } = \dfrac{2 \times 12 \times \sqrt{3} }{{{3} } } = \dfrac{24 \times \sqrt{3} }{{{3} } } = 8 \cdot \sqrt{3}[/tex]

y = 8·√3

[tex]\left(x= \dfrac{12}{tan(60^\circ) } = \dfrac{12}{{\sqrt{3} } } = 4\cdot \sqrt{3} \right)[/tex]